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Abstract

The Usadel equations give a theory of superconductivity, valid in the di!usive limit, that is a generalization of the
microscopic equations of the BCS theory. Because the theory is expressed in a tractable and physical form, even
experimentalists can analytically and numerically calculate detailed properties of superconductors in physically relevant
geometries. Here, we describe the Usadel equations and review their solution in the case of predicting the transition
temperature ¹

C
of a thin normal-superconductor bilayer. We also extend this calculation for thicker bilayers to show the

dependence on the resistivity of the "lms. These results, which show a dependence on both the interface resistance and
heat capacity of the "lms, provide important guidance on fabricating bilayers with reproducible transition temper-
atures. Published by Elsevier Science B.V.

Microcalorimeters and microbolometers based
on transition-edge sensors (TES) [1] show great
potential for improving the detection of X-ray, op-
tical, and infrared photons in scienti"c and com-
mercial instruments [2]. Presently, TES
microcalorimeters have the best X-ray energy res-
olutions, achieving a resolution of 2 eV at 1.5 keV
[3] and 4.5 eV at 6 keV [4].

When designing detectors based on transition-
edge sensors, it is important to be able to reproduc-
ibly control and adjust the transition temperature
¹

C
. Bilayers are practical choices for the TES

because the ¹
C

can be simply adjusted by changing
the relative thickness of the normal and supercon-

ducting layers. Because the TES should have low
resistance so that heat di!uses rapidly throughout
the sensor [5], the bilayer is also an ideal sensor
because it enables the use of high-conductivity nor-
mal metals such as Cu, Ag, or Au.

Although the ¹
C

can be parametrized for bi-
layers by making a series of samples with di!ering
thickness, it is very useful to be able to predict
¹

C
from more fundamental physical parameters. It

is also convenient to predict ¹
C

even for relatively
large thickness changes. Predictions based on
simple physical parameters guide the experi-
mentalist as to what physical parameters need to be
controlled in order to make sensors reproducibly.
Several previous papers have presented theories on
predicting the ¹

C
for bilayers [6]. We believe the

predictions given in this paper based on the Usadel
equations [7] give simpler and more physical pre-
dictions for ¹

C
and also more clearly indicate the

crucial importance of the interface resistance be-
tween the two bilayer "lms.
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The Usadel theory is based on the assumption
that electrons travel di!usively through the metal.
This is an excellent assumption for most thin-"lm
superconductors because electrons either have
short mean-free paths in the metals or scatter dif-
fusively from the boundaries.

We refer the reader to Ref. [8,9] for a derivation
of the Usadel equations as well as a more detailed
description of its physical signi"cance. Because the
Usadel theory is a microscopic theory, the states of
the electrons must be described. In the BCS theory,
which assumes no impurity scattering, k-vectors
can be used to describe the superconducting state.
For a di!usive conductor, k-vectors are no longer
eigenstates, and thus the electron states must be
described through an energy variable E.

The superconducting state is described by a func-
tion h(x,E), where x is a position coordinate (we
consider here only one dimension for simplicity).
The variable h is complex and ranges in magnitude
from 0 to p/2, where h"0 corresponds to the
normal state.

The Usadel equations used to solve for h(x,E) are
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the density of states, p
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is the normal state conduct-

ivity, <
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is the BCS-like interaction potential, q
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the spin-#ip time, u is the usual superconducting
phase, A

x
is the vector potential, D is the supercon-

ducting order parameter, +u
D

is the Debye energy,
and ¹ is the temperature. Because the supercon-
ducting state is formed from a pairing of two elec-
tron states, the pairing is described by a spinor term
which has only three possible components. These
components correspond in Eq. (1) to an excitation-
energy term iE which tends to make h"0 (normal

state), a term which describes pair breaking
through spin-#ip scattering, current, or magnetic
"elds, and a superconducting pairing term. At an
interface, conservation of spectral current requires
that
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where r and l index the right and left side of the
interface, and G

*/5
/A is the electrical conductance of

the interface per unit area.
Physical quantitites can be computed once

h(x,E) is known. For example, the quasiparticle
density of states is given by n

21
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supercurrent density is given by
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An interesting limit of the Usadel equations is
the case of a uniform superconductor, where there
is no spatial dependence and no pair breaking from
magnetic impurities, "elds, or currents. The
"rst and third terms of Eq. (1) are then zero, and
h is easily solved to be h

BCS
(E)"arctan(iD/E), or

equivalently cos h
BCS

"DED/(E2!D2)1@2 and
sin h

BCS
"D/(D2!E2)1@2. Substituting h

BCS
into

Eq. (2), the usual BCS form for the pair potential is
obtained.

The transition temperature of a superconductor
can be calculated [8] by "rst noting that just above
¹

C
, superconductivity is very weak and h@1. If

pair breaking is neglected, Eq. (1) can be linearized
to yield
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This equation can be solved analytically if one
considers a bilayer "lm that is thin enough so h is
approximately constant across the "lm, and small
changes in h can be accounted for by a polynomial
expansion (see Fig. 1). If derivatives of order higher
than two can be neglected, a parabolic form of
h need only be considered in the normal and super-
conductor region. In the superconducting region
D is taken to be constant, and Eq. (4) yields a con-
stant second derivative hA
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Fig. 1. Plot of the magnitude of h versus x for a NS bilayer.
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values of h at the interface. Because the conductiv-
ity is zero outside the bilayer, Eq. (3) implies
Lh/Lx"0 at the outside interfaces of both metals.
Combining the outside boundary conditions with
hA, we "nd at the interface h@
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thickness of the normal and superconducting "lms.
At the bilayer interface, the two constraints of Eq.
(3) then allow h
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to be determined as
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Taking the imaginary part of h
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and inserting

into the gap (2) yields
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The "rst term in the bracket gives the integral that
appears in the BCS gap equation that determines

¹
C0

, the transition temperature of the bare super-
conductor. Eq. (6) can thus be rewritten as a sup-
pression of the ¹

C
due to the normal metal
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This integral result can be well approximated by
the expression
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as long as the pre-exponential (quantity in
brackets) is less than approximately 0.8. For most
bilayers the "lms are thick enough so that in Eq. (8)
the "rst term in the bracket can be neglected.

It is more convenient and physical to express the
interface conductivity in terms of a transmission
coe$cient t of the Landauer conductance formula
G
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"2tN
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, where N

#)
"A/(j
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/2)2 is the num-

ber of conductance channels, and j
&

is the Fermi
wavelength. Although t is considered an adjustable
parameter that depends on the details of the inter-
face layer, in practice for most clean metals and
interfaces it will have a value of order one.

In summary, the transition temperature can be
written as
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For a MoCu bilayer, presently our preferred TES
material [4], we calculate d

0
"1.18 lm and

n
/
/n

4
"0.431, where we have used

n
/
"0.125]1023 states/eVcm3, n

4
"0.29]1023

states/eVcm3, ¹
C0

"1.01 K, and j
&
"0.462 nm.

The nominal value of j
&
for Cu is used since Cu is

better described as a Fermi metal. We "nd that our
experimental data is well described by this formula
with a transmission factor t"0.21. We also note
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that d
0

is approximately equal to the coherence
length.

The above calculation is valid in the limit of thin
bilayers where h does not vary greatly across the
"lm. We have also calculated ¹

C
for thick "lms. In

the case where only the normal "lm is thick, the
di!erential equation of Eq. (4) can be solved exact-
ly, giving the form h

/
(x)"h

0
cosh(kx), where

k2"!2iE/+D
/
. This result changes the relation-

ship between h
/

and h@
/

at the internal interface.
Modifying our previous calculation with this new
h
/

relationship and expanding to lowest order in
d
/
, we "nd a similar formula for ¹

C
as that given in

Eq. (9) but with the replacement
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This formula corresponds physically to summing
the interface resistance with the resistance of the
normal metal over a depth 1

3
the thickness of the

normal "lm.
We have also numerically solved Eq. (4) for ¹

C
in

the case of arbitrary thickness and stacking of
metals. For the case of a thick superconducting
MoCu bilayer, we "nd that the numerical solutions to
¹

C
correspond to Eqs. (9) and (10) but with an

additional correction in 1/t due to the resistance of the
Mo "lm with, again, a depth of 1

3
the "lm thickness.

The formula for ¹
C

is dependent on both the
ratio of the heat capacity of the two metals
(through d

4
n
4

and d
/
n
/
) as well as the resistance

between the two metals. The heat capacity controls
how much the pairing interaction n

4
<

%&&
is reduced

because electrons spend part of their time in the
normal metal where there is no pairing interaction
(<

%&&
"0). The resistance controls how well the

electron states in the superconductor are coupled
with the normal metal. All of the interface resist-
ance but only a fraction of the total resistance
perpendicular to the "lm a!ect the coupling be-
cause the electron states are distributed throughout
the "lms.

A useful formula for the ¹
C

of MoCu bilayers
that takes the "lm resistance into account uses Eq.
(9) with the substitution
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where p
40
"1.89]105/) cm and p

/0
"5.88]

105/) cm are the nominal room temperature con-
ductivity of the metals.

These calculations have important implications
when fabricating TES bilayers since the resistance
of the "lms, perpendicular to the plane of the "lms,
enter into the suppression of ¹

C
. While it is nor-

mally straightforward to make the resistivity of
bulk "lms reproducible, the interface conductance
is of greater concern due to the possibility of surface
contamination. In the fabrication of both our AlAg
and MoCu bilayers, we purposely chose to deposit
the entire bilayer in a single step under clean condi-
tions in order to improve reproducibility. In con-
trast, when we attempted to make a MoCu bilayer
in two deposition steps (in order to pattern the Mo
layer separately from the Cu), even with a light
Ar-ion surface clean of the Mo we found that
¹

C
was irreproducible, with corresponding run-to-

run transmission-factor variations of 0.05}0.15. We
caution that materials which oxidize rapidly, such
as Al or Ti, may be particularly sensitive to depos-
ition conditions. We have also found that MoCu is
more stable than AlAg with respect to thermal
annealing, presumably because Mo and Cu have
negligible interdi!usion at the interface.
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