X-ray properties of Hyperluminous Infrared Galaxies

Francisco J. Carrera, Ángel Ruiz, F. Panessa

Jornada XEUS, IFCA, Santander, 22 de Febrero de 2008

Index

- What is all the fuss about?
- How to observe AGN-galaxy co-evolution
- Why HLIRGs?
- An XMM-Newton study of HLIRGs
 - Sample
 - Results
- What else can we learn using XEUS?
- Conclusions

What is all the fuss about?

- BH in centers of most local gals (Kormendy & Gebhardt, 2001)
- Correlation between mass of central BH and spheroid (Magorrian et al. 1998, McLure & Dunlop 2002)
- Similar evolution of X-ray AGN and optical galaxies (Silvermann et al. 2004)

Connected growth of central BH through accretion, and spheroid through star formation

How to observe AGN-galaxy co-evolution

- Star formation takes place in heavily obscured environments: need penetrating radiation
 - X-rays (of course!): thermal bremstrahlung, binaries
 - MIR-FIR-submm: radiation absorbed and re-emited
 - Radio
- BH growth through accretion produces AGN activity:
 - X-rays (of course!) are "smoking gun", but:
 - Most accretion power in Universe absorbed (Fabian & Iwasawa 1999)
 - X-ray background synthesis model require most AGN in Universe absorbed (Gilli et al. 1999)
 - "Warm" MIR-FIR colours: direct emission absorbed and re-emited
 - Radio

(Happy?) Marriage of X-ray and MIR-FIR Astronomy: coincidence in time of CXO, XMM, Suzaku, Spitzer, Akari, Herschel...

Why HLIRGs?

•HLIRGs:

- Strong star formation: >1000 M_{\odot}/y
- High AGN fraction

Good laboratories to investigate star formation and BH growth:Young galaxies experiencing burst of star formation?Transient phase in AGN evolution?

- $L_{8-1000\mu m} > 10^{13} L_{\odot}$: HLIRGS (Rowan-Robinson 2000 RR00)
 - Most with AGN contribution (Verma et al. 2002, ...)
 - Only some interacting (~30%) (Farrah et al. 2002)
 - Not trivially high luminosity end of ULIRGs
 - A few in X-rays: heavy obscuration, even Compton Thick (CT) (Iwasawa et al. 2005, Wilman et al. 2003)

An XMM-Newton study of HLIRGs: Sample

- Out of the 45 HLIRGs in RR00 sample, those with:
 - Public XMM-Newton data as of Dec. 2004
 - Own XMM-Newton AO-5 data
 - z < 2: avoid strong biasing towards high z QSOs
- 14 objects in final sample:
 - All SED fitting in MIR/FIR (RR00, Farrah et al., Verma et al.)

	Source	Type (opt)	Z	AGN/STB (IR SED fitting)	CT?
2	IRAS F00235+1024	Starburst	0.575	0.5/0.5	
Ζ	IRAS 07380-2342	Starburst	0.292	<mark>0.6</mark> /0.4	X
	IRAS 00182-7112	QSO 2	0.327	0.35/ 0.65	✓
Δ	IRAS 09104+4109	QSO 2	0.442	1/0	×
	IRAS 12514+1027	Seyfert 2	0.3	0.4/ 0. 6	×
	IRAS F15307+3252	Seyfert 2	0.926	0.7 /0.3	✓
	PG 1206+459	QSO	1.158	1/0	X
	PG 1247+267	QSO	2.038	1/0	X
	IRAS F12509+3122	QSO	0.780	<mark>0.6</mark> /0.4	X
Q	IRAS 13279+3401	QSO	0.36	<mark>0.7</mark> /0.3	X
0	IRAS 14026+4341	QSO 1.5	0.323	<mark>0.6</mark> /0.4	X
	IRAS F14218+3845	QSO	1.21	0.2/ <mark>0.8</mark>	x
	IRAS 16347+7037	QSO	1.334	<mark>0.8</mark> /0.2	x
	IRAS 18216+6418	QSO	0.297	<mark>0.6</mark> /0.4	x

	Source	Model	log <i>L_{0.5-2}</i>	/ og <i>L</i> ₂₋₁₀	CT?
	IRAS F00235+1024	3σ upper limit	-	<42.4	~
	IRAS 07380-2342	3σ upper limit	-	<42.5	X
	IRAS 00182-7112	reflected+narrow line (0.8keV)	<41.9	44.8	>
	IRAS 09104+4109	"thermal"+reflected+narrow line	44.2	45.3	✓
	IRAS 12514+1027	thermal+absorbed direct (4x10 ²³)	42.2	43.3	✓
	IRAS F15307+3252	direct	<43.1	43.7→45.5	~
4	PG 1206+459	direct	<44.0	45.1	X
	PG 1247+267	"thermal"+direct	45.5	45.9	X
	IRAS F12509+3122	"thermal"+direct	43.8	44.3	X
	IRAS 13279+3401	3σ upper limit	-	<42.2	X
•	- IRAS 14026+4341	3σ upper limit	-	<42.6	X
	IRAS F14218+3845	direct	<43.8	44.6	X
J	IRAS 16347+7037	"thermal"+direct	45.7	46.0	X
	IRAS 18216+6418	"thermal"+direct	45.1	45.6	x

Not detected with XMM-Newton *

		Source	Model	log <i>L_{0.5-2}</i>	/ og <i>L</i> ₂₋₁₀	CT?
		IRAS F00235+1024	3 σ upper limit	-	<42.4	✓
		IRAS 07380-2342	3σ upper limit	-	<42.5	X
		IRAS 00182-7112	reflected+narrow line (0.8keV)	<41.9	44.8	~
bed		IRAS 09104+4109	"thermal"+reflected+narrow line	44.2	45.3	✓
sor		IRAS 12514+1027	thermal+absorbed direct (4x10 ²³)	42.2	43.3	✓
ab		IRAS F15307+3252	direct	<43.1	43.7→45.5	×
gly		PG 1206+459	direct	<44.0	45.1	X
ron		PG 1247+267	"thermal"+direct	45.5	45.9	X
St		IRAS F12509+3122	"thermal"+direct	43.8	44.3	X
		IRAS 13279+3401	3σ upper limit	-	<42.2	X
		IRAS 14026+4341	3σ upper limit	-	<42.6	X
		IRAS F14218+3845	direct	<43.8	44.6	X
		IRAS 16347+7037	"thermal"+direct	45.7	46.0	X
		IRAS 18216+6418	"thermal"+direct	45.1	45.6	x

]	Source	Model	log <i>L_{0.5-2}</i>	<i>l</i> og <i>L</i> ₂₋₁₀	CT?
	IRAS F00235+1024	3σ upper limit	-	<42.4	 Image: A second s
	IRAS 07380-2342	3σ upper limit	-	<42.5	X
	IRAS 00182-7112	reflected+narrow line (0.8keV)	<41.9	44.8	✓
	IRAS 09104+4109	"thermal"+reflected+narrow line	44.2	45.3	✓
	IRAS 12514+1027	thermal+absorbed direct (4x10 ²³)	42.2	43.3	✓
	IRAS F15307+3252	direct	<43.1	43.7→45.5	✓
	PG 1206+459	direct	<44.0	45.1	X
	PG 1247+267	"thermal"+direct	45.5	45.9	X
	IRAS F12509+3122	"thermal"+direct	43.8	44.3	X
	IRAS 13279+3401	3σ upper limit	-	<42.2	X
	IRAS 14026+4341	3σ upper limit	-	<42.6	X
	IRAS F14218+3845	direct	<43.8	44.6	X
	IRAS 16347+7037	"thermal"+direct	45.7	46.0	X
•	IRAS 18216+6418	"thermal"+direct	45.1	45.6	X

Soft excess: too bright to come from STB

Source	Model	log <i>L_{0.5-2}</i>	/og/ 2-10	CT?
IRAS F00235+1024	3σ upper limit	-	<42.4	1
IRAS 07380-2342	3σ upper limit	-	<42.5	X
IRAS 00182-7112	reflected+narrow line (0.8keV)	<41.9	44.8	*
IRAS 09104+4109	"thermal"+reflected+narrow line	44.2	45.3	×
IRAS 12514+1027	thermal+absorbed direct (4x10 ²³)	42.2	43.3	~
IRAS F15307+3252	direct	<43.1	43.7→45.5	×
PG 1206+459	direct	<44.0	45.1	X
PG 1247+267	"thermal"+direct	45.5	45.9	X
IRAS F12509+3122	"thermal"+direct	43.8	44.3	X
IRAS 13279+3401	3σ upper limit	-	<42.2	X
IRAS 14026+4341	3σ upper limit	-	<42.6	X
IRAS F14218+3845	direct	<43.8	44.6	X
IRAS 16347+7037	"thermal"+direct	45.7	46.0	X
IRAS 18216+6418	"thermal"+direct	45.1	45.6	X

Only one detection of thermal emission from STB

Z

What else can we learn using XEUS?

- Actually quite a lot!
- With XMM-Newton we haven't:
 - detected STB emission (only 1 source)
 - discriminated shape (origin) of >2keV continuum
 - in particular between CT and/or absorption (column density)
 - discriminated physical origin of "soft excess"
 - detected Fe K line (only 2)
- Concentrated on WFI with multilayers (+bgd, 20ks):
 - good energy range and resolution
 - HXC would improve discrimination of >10keV continuum

Model for XEUS sims: "standard" UM

Norm.Coutns s-1 keV-1

 $\Delta \chi^2$

A CT STB: IRAS F00235

- Undetected with XMM-Newton in 15ks
- With XEUS in 20ks:
 - Significant detection of thermal STB, absorbed AGN and reflected AGN
 - Partial covering strongly rejected

Conclusions

- HLIRGs have strong star formation and high fraction of AGN activity: good testbed for AGN-gal. growth
- XMM-Newton-selected sample of 14 HLIRGs:
 - 10/14 detected and AGN-dominated in X-rays:
 - 8 pure AGN, 2 mixed
 - Thermal STB emission only 1
 - Under luminous in X-rays with respect to local QSO SED:
 - X-ray absorption
 - Departure from standard local QSO SED
 - X-ray-to-IR lum. ratio ~constant with z: STB and AGN physically related?
- XEUS WFI+multilayers would detect in X-rays:
 - Direct emission from CT objects \Rightarrow bolometric AGN luminosity
 - Column density, reflected emission and Fe line ⇒ orientation and/or covering factor (~geometry of BH environment!)
 - Emission from STB \Rightarrow thermal vs. binaries