
R introduction
Release

Maite Ceballos (IFCA), Nicolás Cardiel (UCM)

April 07, 2014

CONTENTS

1 Introduction 3

2 Main features of R 5
2.1 Starting R . 5
2.2 Quitting R . 6
2.3 Help in R . 6
2.4 Other useful commands . 6

3 Data structure 9
3.1 Data structure types . 9

3.1.1 Vectors . 10
3.1.2 Matrices . 12
3.1.3 Arrays . 12
3.1.4 Factors . 12
3.1.5 Lists . 13
3.1.6 Data Frames (Tables) . 14
3.1.7 Functions . 17

3.2 Special Values . 19
3.3 Subsetting . 20

3.3.1 Removing NA values . 24

4 Basic Operations 25

5 Control Structures 27
5.1 Types . 27
5.2 Control Flow: break, next, return . 27

6 Data Reading and Writting 29
6.1 ASCII data files . 29
6.2 R Example Data . 31

7 Graphs 35
7.1 Graphics package . 35
7.2 Important Plotting Functions . 35
7.3 Simple plots . 38
7.4 Mathematical Annotation . 39
7.5 Making use of colours . 41

7.5.1 Colour Palettes . 41
7.5.2 Colour Interpolation . 42
7.5.3 Additional Palettes and colour functions . 43

8 Statistical Treatment 45
8.1 Associated Functions . 45
8.2 Common probability distributions . 48

i

8.3 Example script . 49

9 RStudio: an integrated environment 51

10 Bibliography and References 53
10.1 Books . 53
10.2 On-line tutorial and courses . 53
10.3 Center for Astrostatistics . 53
10.4 R graphs . 53
10.5 Blogs . 54

11 Pdf Version 55

12 Indices and tables 57

ii

R introduction, Release

First steps in R does not pretend to be a comprehensive guide to R package (there are many excellent books and
web tutorials) but it aims at providing an introduction to the R statistical package for the (under)graduate students
following an introductory Statistics Course.

CONTENTS 1

R introduction, Release

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Why R?

Although there are many tools that can be employed for statistical analysis (SAS, SPSS, Stata, Minitab, MATLAB,
Wolfram Mathematica,... among others), we have chosen R because:

• It is an integrated environment: it has been developed as a whole entity and not as a collection of tools. It
includes:

– An efficient system for data storage and manipulation

– A collection of tools to manage arrays

– Integrated tools for data analysis

– Screen graphs and portable format graphs generation

– A simple and effective programming language (with scripting capabilities)

• It is free software! Available through the project WEB or through CRAN (Comprehensive R Archive
Network)

• Available for different platforms (source code and pre-compiled binaries): UNIX, MacOS, Windows

• ...

• Many scientists are using it!

(image from R project web page)

R is continuously (and exponentially) growing with the addition of contributed packages.

3

http://www.r-project.org
http://cran.r-project.org
http://www.r-project.org

R introduction, Release

(from R Journal)

Although... No statistical package can work miracles!

(GIGO: Garbage In, Garbage Out)

(image from http://www.lovemytool.com)

4 Chapter 1. Introduction

http://journal.r-project.org/archive/2009-2/
http://www.lovemytool.com

CHAPTER

TWO

MAIN FEATURES OF R

Note: Before starting to work with R, it is advised to create a new dedicated directory where all the work should
be included. In fact, if several projects are to be developed at the same time, every project should have its own
directory.

For linux:

[user@pc]$ mkdir work
[user@pc]$ cd work
[user@pc work]$ R

Warning: R is case-sensitive, thus in this example:

> a = 1
> A = 2

variables a and A are different variables:

> a == A # is variable ’A’ equal to variable ’a’ ?
[1] FALSE

2.1 Starting R

For linux:

[user@pc]$ R # invoke R

R version 3.0.1 (2013-05-16) -- "Good Sport"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-redhat-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

5

R introduction, Release

> # R command line prompt

[user@pc]$ R --silent # Suppress welcome message
[user@pc]$ R --help # Show R options

Usage: R [options] [< infile] [> outfile]
or: R CMD command [arguments]

Start R, a system for statistical computation and graphics, with the
specified options, or invoke an R tool via the ’R CMD’ interface.

Options:
-h, --help Print short help message and exit
--version Print version info and exit
--encoding=ENC Specify encoding to be used for stdin

...

...

2.2 Quitting R

> quit()
Save workspace image? [y/n/c]: # possibility of saving info for next session
> quit(save="no") # finish R without any question
> Ctrl-D # key combination equivalent to quit()

Using parenthesis in quit() informs R that the command refers to a function and not to a variable.

2.3 Help in R

> help.start() # general help displayed in a web browser
> help("pp") # help on function "pp"
> ?pp # help on function "pp"
> help.search("pp") # search for instances of the string "pp"
> ??pp # search for instances of the string "pp"
> apropos("pp", mode="function") # list available functions with "pp" in their names
> example(topic) # run the R code from the *Examples* part of R’s

online help on topic; try for example example(plot)

Tab key can be used to complete the commands:

> Sys.<Tab><Tab> # pressing <Tab> twice (after typing ’Sys.’) to show
available Sys options

Sys.chmod Sys.glob Sys.setFileTime Sys.umask
Sys.Date Sys.info Sys.setlocale Sys.unsetenv
Sys.getenv Sys.localeconv Sys.sleep Sys.which
Sys.getlocale Sys.readlink Sys.time
Sys.getpid Sys.setenv Sys.timezone

> Sys.Date()
[1] "2030-01-01"

2.4 Other useful commands

> R.version.string
[1] "R version 3.0.1 (2013-05-16)"

6 Chapter 2. Main features of R

R introduction, Release

> capabilities()
jpeg png tiff tcltk X11 aqua http/ftp sockets
TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE

libxml fifo cledit iconv NLS profmem cairo
TRUE TRUE TRUE TRUE TRUE FALSE TRUE

> citation()

To cite R in publications use:

R Core Team (2013). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
URL http://www.R-project.org/.

...

...

> R.home() # return the R ’home’ directory
[1] "/usr/lib64/R"
> getwd() # return the working directory
[1] "/home/user/R"
> setwd("/home/user/newRdir") # set new working directory
> dir() # show content of current directory
... # (different from ’ls()’ command
... # which lists objects in current workspace)

> history(n) # display the last ’n’ commands (default = 25)
...
... # (press "q" to EXIT)

> source("filename.R") # execute commands in the filename.R script

> sink("register.txt") # divert R output to an external file

> sink() # stop sink-ing (results return to console)

2.4. Other useful commands 7

R introduction, Release

8 Chapter 2. Main features of R

CHAPTER

THREE

DATA STRUCTURE

R is an object-oriented language: an object in R is anything (constants, data structures, functions, graphs) that can
be assigned to a variable:

• Data Objects: used to store real or complex numerical values, logical values or characters. These objects
are always vectors: there are no scalars in R.

• Language Objects: functions, expressions

3.1 Data structure types

• Vectors: one-dimensional arrays used to store collection data of the same mode

– Numeric Vectors (mode: numeric)

– Complex Vectors (mode: complex)

– Logical Vectors (model: logical)

– Character Vector or text strings (mode: character)

• Matrices: two-dimensional arrays to store collections of data of the same mode. They are accessed by two
integer indices.

• Arrays: similar to matrices but they can be multi-dimensional (more than two dimensions)

• Factors: vectors of categorical variables designed to group the components of another vector with the same
size

• Lists: ordered collection of objects, where the elements can be of different types

• Data Frames: generalization of matrices where different columns can store different mode data.

• Functions: objects created by the user and reused to make specific operations.

9

R introduction, Release

3.1.1 Vectors

Numeric Vectors

There are several ways to assign values to a variable:

> a <- 1.7 # assign a value to a vector with only one element (~ scalar)
> 1.7 -> a # assign a value to a vector with only one element (~ scalar)
> a = 1.7 # assign a value to a vector with only one element (~ scalar)
> assign("a", 1.7) # assign a value to a vector with only one element (~ scalar)

To show the values:

> a # show the value in the screen (not valid in scripts)
[1] 1.7
> print(a) # show the value in the screen (valid in scripts)
[1] 1.7

To generate a vector with several numeric values:

> a <- c(10, 11, 15, 19) # assign four values to a vector using the concatenate command c()
> a # show the value in the screen
[1] 10 11 15 19

The operations are always done over all the elements of the numeric array:

> a*a # evaluate the square value of every element in the vector
[1] 100 121 225 361
> 1/a # evaluate the inverse value of every element in the vector
[1] 0.10000000 0.09090909 0.06666667 0.05263158
> b <- a-1 # subtract 1 from every element and assign the result to b
> b
[1] 9 10 14 18

To generate a sequence:

> 2:10 # generate a sequence from n1=2 to n2=10 using n1:n2
[1] 2 3 4 5 6 7 8 9 10
> 5:1 # generate an inverse sequence if n2 < n1
[1] 5 4 3 2 1

> seq(from=n1, to=n2, by=n3) # generate sequence from n1 to n2 using n3 step
(parameters names can be avoided if order is kept)

> seq(from=1, to=10, by=3)
[1] 1 4 7 10
> seq(1, 10, 3)
[1] 1 4 7 10

> seq(length=10, from=1, by=3) # generate a fixed length sequence
[1] 1 4 7 10 13 16 19 22 25 28

> help(seq) # for help about this command
...

To generate repetitions:

> a <- 1:3; b <- rep(a, times=3); c <- rep(a, each=3) # command rep()

In the previous example we have run three commands in the same line. They have been separated by a ‘;’.

The content of the three variables is now:

> a
[1] 1 2 3
> b

10 Chapter 3. Data structure

R introduction, Release

[1] 1 2 3 1 2 3 1 2 3
> c
[1] 1 1 1 2 2 2 3 3 3

The recycling rule: vectors of different sizes can be combined, as far as the length of the longer vector is a
multiple of the shorter vector’s length (otherwise a warning is issued, although the operation is carried out):

> a+c # proper dimensions
[1] 2 3 4 3 4 5 4 5 6 # (operation equivalent to b+c)

> d <- c(10,100)
> b+d # incorrect dimensions
[1] 11 102 13 101 12 103 11 102 13
Warning message:
In b + d : longer object length is not a multiple of shorter object length

If we need to know which are the objects that are currently defined, we can list them:

> ls()
[1] "a" "b" "c" "d"

Undesired objects can be deleted using rm() function:

> rm(a,c) # remove objects ’a’ and ’b’
> ls() # list current objects
[1] "b" "d"

In order to remove everything in the working environment:

> rm(list=ls()) # Use this with caution
> ls() # (you’ll receive no warning!)
character(0)

Logical Vectors

> a <- seq(1:10) # generate a sequence
> a
[1] 1 2 3 4 5 6 7 8 9 10 # show values in screen
> b <- (a>5) # assign values from an inequality
> b # show values in screen
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> a[b] # show values that fulfil the condition
[1] 6 7 8 9 10
> a[a>5] # the same, but avoiding intermediate variable
[1] 6 7 8 9 10

Character Vectors

> a <- "This is an example" # generate a character vector
> a # show vector content
[1] "This is an example"

We can concatenate vectors after converting them into character vectors:

> x <- 1.5
> y <- -2.7
> paste("Point is (",x,",",y,")", sep="") # concatenate x, y and a string using ’paste’
[1] "Point is (1.5,-2.7)"

3.1. Data structure types 11

R introduction, Release

3.1.2 Matrices

A matrix is a bi-dimensional collection of data:

> a <- matrix(1:12, nrow=3, ncol=4) # define a matrix with 3 rows and 4 columns
> a

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

> dim(a) # return matrix dimensions (rows,columns)
[1] 3 4

The elements of vectors and matrices are recycled when it is required by the involved dimensions:

> a <- matrix(1:8, nrow=4, ncol=4) # create a matrix with 4 rows and 4 columns
> a

[,1] [,2] [,3] [,4]
[1,] 1 5 1 5
[2,] 2 6 2 6
[3,] 3 7 3 7
[4,] 4 8 4 8

3.1.3 Arrays

They are similar to the matrices although they can have 2 o more dimensions.

> z <- array(1:24, dim=c(2,3,4))
> z
, , 1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

, , 3

[,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18

, , 4

[,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24

3.1.4 Factors

Factors are vectors that contain categorical information useful to group the values of other vectors of the same
size. Let’s see an example:

> bv <- c(0.92,0.97,0.87,0.91,0.92,1.04,0.91,0.94,0.96,
+ 0.90,0.96,0.86,0.85) # (B-V) colours from 13 galaxies

12 Chapter 3. Data structure

R introduction, Release

If additional information is available (for instance, the morphological type of the galaxies) we can create a factor
containing the galaxy types:

> morfo <- c("Sab","E","Sab","S0","E","E","S0","S0","E",
+ "Sab","E","Sab","S0") # morphological info (same size)
> length(morfo) # ensure vector is the same size
[1] 13
> fmorfo <- factor(morfo) # create factor with ’factor()’
> fmorfo
[1] Sab E Sab S0 E E S0 S0 E Sab E Sab S0 # show factor content
Levels: E S0 Sab # factor different values (levels)
> levels(fmorfo) # show factor levels
[1] "E" "S0" "Sab"

We could use this additional information to perform an statistical analysis segregating the data according to these
types. This will be covered lately in the Functions section.

3.1.5 Lists

Lists are ordered collections of objects, where the elements can be of a different type (a list can be a combination
of matrices, vectors, other lists, etc.) They are created using the list() function:

> gal <- list(name="NGC3379", morf="E", T.RC3=-5, colours=c(0.53,0.96))
> gal
$name
[1] "NGC3379"

$morf
[1] "E"

$T.RC3
[1] -5

$colours
[1] 0.53 0.96

> gal$<Tab> # pressing Tab key after ’$’, the elements of ’gal’ are shown
gal$name gal$morf gal$T.RC3 gal$colours

> length(gal) # check how many elements ’gal’ has
[1] 4

> names(gal) # return element names
[1] "name" "morf" "T.RC3" "colours"

New elements can be added in a simple way, just defining them:

> gal$radio <- TRUE # add a boolean element
> gal$redshift <- 0.002922 # add a numeric element

> names(gal) # return element names
[1] "name" "morf" "T.RC3" "colours" "radio" "redshift"

Lists can be concatenated to generate bigger lists. If we have list1, list2, list3, we can create a unique list
which is the result of the union of these three lists:

> list123 <- c(list1, list2, list3)

As the elements in a list can be R objects of a different type:

• Lists are extremely versatile since they can store every type of information (good)

• Lists can be converted in objects with a rather complex structure (bad). A list can contain several elements
which are vectors of different length, which is similar to having a table where the columns have a different

3.1. Data structure types 13

R introduction, Release

number of rows.

The ideal situation is to take advantage of the list versatility but preventing them from growing with a very complex
structure. This is why R has defined a new type of data which fulfils both requirements: a Data Frame.

3.1.6 Data Frames (Tables)

A Data Frame is an special type of list very useful for the statistical work. There are some restrictions to guarantee
that they can be used for this statistical purpose.

Among other restrictions, a Data Frame must verify that:

• List components must be vectors (numeric, character or logical vectors), factors, numeric matrices or other
data frames.

• Vectors, which are the variables in the data frame, must be of the same length.

Warning: In a data frame, character vectors are automatically converted into factors, and the number of levels
can be determined as the number of different values in such a vector. This default behaviour can be modified
with the options(stringsAsFactors = FALSE) command.

Basically, in a Data Frame all the information is displayed as a table where the columns have the same number of
rows and can contain different type objects (numbers, characters, ...).

Data Frames can be created using the data.frame() function. Let’s see how to define a data frame with two
elements, a numeric vector and a character vector (note that both must be same length vectors):

> options(stringsAsFactors = FALSE)
> df <- data.frame(numbers=c(10,20,30,40),text=c("a","b","c","a"))
> df

numbers text
1 10 a
2 20 b
3 30 c
4 40 a
> df$text # character vector not converted to a factor
[1] "a" "b" "c" "a"

> options(stringsAsFactors = TRUE) # default
> df <- data.frame(numbers=c(10,20,30,40),text=c("a","b","c","a"))
> df$text
[1] a b c a # character vector of length = 4
Levels: a b c # converted to a three levels factor!!
> df$numbers
[1] 10 20 30 40 # numeric vector of length = 4

> mode(df) # storage mode of the object
[1] "list"
> typeof(df) # (internal) storage mode of the object
[1] "list"
> class(df) # object class
[1] "data.frame"

However the most common way of defining a data frame is reading the data stored in a file. We will see later how
to do it using read.table() function.

Factors and Tables

It is frequently useful (for instance, for table creation) to be able to generate factors from a numeric continuum
variable. To do so, we can use the cut command. Its parameter breaks defines how the data are divided. If
breaks is a number, this is used as the number of (same length) intervals:

14 Chapter 3. Data structure

R introduction, Release

> bv <- c(0.92,0.97,0.87,0.91,0.92,1.04,0.91,0.94,0.96,
+ 0.90,0.96,0.86,0.85) # (B-V) colors from 13 galaxies
> fbv <- cut(bv,breaks=3) # divide ’bv’ in 3 equal-length intervals
> fbv # show in which interval every galaxy is
[1] (0.913,0.977] (0.913,0.977] (0.85,0.913] (0.85,0.913] (0.913,0.977]
[6] (0.977,1.04] (0.85,0.913] (0.913,0.977] (0.913,0.977] (0.85,0.913]
[11] (0.913,0.977] (0.85,0.913] (0.85,0.913]
Levels: (0.85,0.913] (0.913,0.977] (0.977,1.04] # the 3 intervals
> table(fbv) # generate a table with the 3 intervals
fbv

(0.85,0.913] (0.913,0.977] (0.977,1.04]
6 6 1

If breaks is a vector, its values are used as the limits of the intervals:

> ffbv <- cut(bv,breaks=c(0.80,0.90,1.00,1.10))
> table(ffbv)
ffbv

(0.8,0.9] (0.9,1] (1,1.1]
4 8 1

If we want just an approximate number of intervals, but with equally spaced round values, we can use the
pretty() function (that not always returns the specified number of intervals!):

> fffbv <- cut(bv,pretty(bv,3)) # ask for 3 ’pretty’ intervals
> table(fffbv) # return 4 intervals
fffbv

(0.85,0.9] (0.9,0.95] (0.95,1] (1,1.05]
3 5 3 1

We can also use a quantile division:

> ffffbv <- cut(bv,quantile(bv,(0:4)/4)) # ask for the 4 quantiles
> table(ffffbv)
ffffbv

(0.85,0.9] (0.9,0.92] (0.92,0.96] (0.96,1.04]
3 4 3 2

Warning: The last two groupings exclude the value 0.85 which is one of our data values.

Factors can be used to build multi-dimensional tables. Let’s see how. First of all, we will define the data (that in a
real case would be read from a data file):

> heights <- c(1.64,1.76,1.79,1.65,1.68,1.65,1.86,1.82,1.73,
+ 1.75,1.59,1.87,1.73,1.57,1.63,1.71,1.68,1.73,1.53,1.82)
> weights <- c(64,77,82,62,71,72,85,68,72,75,81,88,72,
+ 71,74,69,81,67,65,73)
> ages <- c(12,34,23,53,23,12,53,38,83,28,28,58,38,
+ 63,72,44,33,27,32,38)

For each one of these variables we can generate factors:

> fheights <- cut(heights,c(1.50,1.60,1.70,1.80,1.90)) # factor for ’heights’
> fweights <- cut(weights,c(60,70,80,90)) # factor for ’weights’
> fages <- cut(ages,seq(10,90,10)) # factor for ’ages’

Table generation is now straightforward using these factors. We can, for instance, generate bi-dimensional tables:

> ta <- table(fheights, fweights) # table for ’heights’ vs. ’weights’
> ta

fweights
fheights (60,70] (70,80] (80,90]

(1.5,1.6] 1 1 1
(1.6,1.7] 2 3 1

3.1. Data structure types 15

R introduction, Release

(1.7,1.8] 2 4 1
(1.8,1.9] 1 1 2

Marginal frequencies can also be included:

> addmargins(ta)
fweights

fheights (60,70] (70,80] (80,90] Sum
(1.5,1.6] 1 1 1 3
(1.6,1.7] 2 3 1 6
(1.7,1.8] 2 4 1 7
(1.8,1.9] 1 1 2 4
Sum 6 9 5 20

Or we can work with the relative frequencies;

> tta <- prop.table(ta)
> addmargins(tta)

fweights
fheights (60,70] (70,80] (80,90] Sum

(1.5,1.6] 0.05 0.05 0.05 0.15
(1.6,1.7] 0.10 0.15 0.05 0.30
(1.7,1.8] 0.10 0.20 0.05 0.35
(1.8,1.9] 0.05 0.05 0.10 0.20
Sum 0.30 0.45 0.25 1.00

We can also generate tridimensional tables. Following the previous example, we can examine the same bi-
dimensional table for each age interval:

> table(fheights, fweights, fages)
, , fages = (10,20] # first age interval

fweights
fheights (60,70] (70,80] (80,90]

(1.5,1.6] 0 0 0
(1.6,1.7] 1 1 0
(1.7,1.8] 0 0 0
(1.8,1.9] 0 0 0

, , fages = (20,30] # second age interval

fweights
fheights (60,70] (70,80] (80,90]

(1.5,1.6] 0 0 1
(1.6,1.7] 0 1 0
(1.7,1.8] 1 1 1
(1.8,1.9] 0 0 0

........

, , fages = (70,80] # next-to-the-last age interval

fweights
fheights (60,70] (70,80] (80,90]

(1.5,1.6] 0 0 0
(1.6,1.7] 0 1 0
(1.7,1.8] 0 0 0
(1.8,1.9] 0 0 0

, , fages = (80,90] # last age interval

fweights
fheights (60,70] (70,80] (80,90]

(1.5,1.6] 0 0 0

16 Chapter 3. Data structure

R introduction, Release

(1.6,1.7] 0 0 0
(1.7,1.8] 0 1 0
(1.8,1.9] 0 0 0

> sum(table(fheights, fweights, fages)) # check total number of entries
[1] 20

Matrices and Tables

We can easily generate 2D tables from matrices:

> mtab <- matrix(c(30,12,47,58,25,32), ncol=2, byrow=TRUE) # create a matrix filled by rows
> colnames(mtab) <- c("ellipticals","spirals") # set matrix column names
> rownames(mtab) <- c("sample1","sample2","new sample") # set matrix row names
> mtab

ellipticals spirals
sample1 30 12
sample2 47 58
new sample 25 32

However, mtab is not a true R table. To transform it into a true table we can use:

> rtab <- as.table(mtab)

> mode(mtab);mode(rtab) # indistinguishable in ’mode’
[1] "numeric"
[1] "numeric"

> typeof(mtab);typeof(rtab) # indistinguishable in ’typeof’
[1] "double"
[1] "double"

> class(mtab);class(rtab) # but different in ’class’ !
[1] "matrix"
[1] "table"

In addition to the functions to calculate marginal distributions (margin.table), frequencies (prop.table),
etc., the command summary returns the χ2 test for the independence of the factors:

> summary(rtab)
Number of cases in table: 204
Number of factors: 2
Test for independence of all factors:

Chisq = 9.726, df = 2, p-value = 0.007726

The same command returns a different result when it is applied to a matrix type object:

> summary(mtab)
V1 V2

Min. :25.0 Min. :12
1st Qu.:27.5 1st Qu.:22
Median :30.0 Median :32
Mean :34.0 Mean :34
3rd Qu.:38.5 3rd Qu.:45
Max. :47.0 Max. :58

3.1.7 Functions

These are objects that can be created by the user and then re-used to make specific operations.

For example, we can define a function to calculate the standard deviation:

3.1. Data structure types 17

R introduction, Release

> stddev <- function(x) { # user-defined function ’stddev’
+ res = sqrt(sum((x-mean(x))^2) / (length(x)-1))
+ return(res)
+ }

Functions can be defined inside other functions (nested) and can also be passed as arguments to other functions.
The value returned by a function is the result of the last expression evaluated in the body of the function or the
value grabbed by the return command.

R functions arguments can have default values or can be missing. Arguments can be matched by name or position:

> mynumbers <- c(1, 2, 3, 4, 5)
> stddev(mynumbers) # equivalent calls to ’stddev’
[1] 1.581139
> stddev(x = mynumbers)
[1] 1.581139

> sd(x=mynumbers) # R function using ’missing argument’ with
[1] 1.581139 # default value (FALSE)
> sd(x=mynumbers, na.rm=TRUE) # Specify all arguments by name
[1] 1.581139
> sd(mynumbers, na.rm=TRUE) # Mixing positional and by name matching
[1] 1.581139
> sd(na.rm=TRUE, x=mynumbers) # legal but not recommended (keep order)
[1] 1.581139

Looping Functions

There are special R functions that can be used to repeat instructions in the command line and facilitate the pro-
gramming process:

• lapply: evaluate a function for each element of a list

• sapply: evaluate a function for each element of a list simplifying the result

• apply: Apply a function over the margins of an array (usually to apply a function to the rows/columns in a
matrix)

• tapply: Apply a function over subsets of a vector (for example defined with a factor)

• mapply: Multivariate version of lapply

Let’s see how to apply these functions to the previous example with the galaxy colours:

> bv.vec <- c(0.92,0.97,0.87, 0.91,0.92,1.04,0.91,0.94,0.96,
+ 0.90,0.96,0.86,0.85) # (B-V) colours from 13 galaxies
> morfo <- c("Sab","E","Sab","S0","E", "E","S0","S0","E", # ordered morph. information
+ "Sab","E","Sab","S0") # for the galaxies

lapply

> bv.list <- list(colsSab=c(0.92,0.87,0.90,0.86),
+ colsE=c(0.97,0.92,1.04,0.96,0.96),
+ colsSO=c(0.91,0.91,0.94,0.85))

> lapply(bv.list, mean) # calculate mean for each galaxy type
$colsSab # (returns a list)
[1] 0.8875

$colsE
[1] 0.97

$colsSO
[1] 0.9025

18 Chapter 3. Data structure

R introduction, Release

sapply

> sapply(bv.list, mean) # simplified version of ’lapply’
colsSab colsE colsSO # (returns a vector)
0.8875 0.9700 0.9025

tapply

> fmorfo <- factor(morfo) # create factor
> tapply(bv,fmorfo,mean) # apply mean function to the galaxy colours

E S0 Sab # segregating by morphological type
0.9700 0.9025 0.8875

apply

> a <- matrix(1:12, nrow=3, ncol=4) # define a matrix with 3 rows and 4 columns
> a

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

> apply(a,1,mean) # calculate rows ("1") mean == rowMeans
[1] 5.5 6.5 7.5
> rowMeans(a)
[1] 5.5 6.5 7.5

> apply(a,1,sum) # calculate rows ("1") sum == rowSums
[1] 22 26 30
> rowSums(a)
[1] 22 26 30

> apply(a,2,mean) # calculate columns ("2") mean == colMeans
[1] 2 5 8 11
> apply(a,2,sum) # calculate columns ("2") sum == colSums
[1] 6 15 24 33

3.2 Special Values

It is useful to define some values as * Not Available* (NA):

> a <- c(0:2, NA, NA, 5:7) # define vector with NA values
> a # show values in screen
[1] 0 1 2 NA NA 5 6 7

We can carry out mathematical operations:

> a*a # calculate the square of ’a’
[1] 0 1 4 NA NA 25 36 49

We can check whether there is any undefined value:

> unavail <- is.na(a) # use of is.na() function
> unavail
[1] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE

Sometimes calculations end up in values with no mathematical sense:

> a <- log(-1)
> a
[1] NaN # Result is Not-a-Number (NaN)
> a <- 1/0; b <- 0/0; c <- log(0); d <- c(a,b,c)
> d

3.2. Special Values 19

R introduction, Release

[1] Inf NaN -Inf # Infinities and Not-a-Number
> 1/Inf # Possible to operate with Infinite
[1] 0 # (if it makes sense!)

To check whether we have Infinite values or Not-a-Number values:

> is.infinite(d) # is there any Infinite value?
[1] TRUE FALSE TRUE
> is.nan(d) # is there any Not-a-Number value?
[1] FALSE TRUE FALSE

Main R functions (mean, var, sum, min, max,...) accept an argument called na.rm that can be set as TRUE or
FALSE to remove (or not) the unavailable data.

> a <- c(0:2, NA, NA, 5:7) # define vector ’a’ with Not-Available data
> a
[1] 0 1 2 NA NA 5 6 7
> mean(a) # since there are Not-Available data
[1] NA

> mean(a, na.rm=TRUE) # calculate mean, ignoring Not-Available values
[1] 3.5

3.3 Subsetting

Several R operators can be used to extract subsets (slices) from R objects:

• [can be used to extract one or more elements of an R object. It always returns an object of the same class

• [[can be used to extract a single element from a data frame or a list. The class of the extracted element can
be different from the original object.

• $ can be used to extract named elements from a data frame or a list.

For Numeric Vectors:

> a <- 1:15 # generate a sequence
> a <- a*a # calculate the square of ’a’
> a # show in screen
[1] 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225
> a[3] # access to the third value in the vector
[1] 9 # (numeric index)
> a[3:5] # access to a continuum slice of values
[1] 9 16 25 # (numeric index)
> a[c(1,3,10)] # access to a given sequence of values
[1] 1 9 100 # (numeric index)
> a[-1] # negative index remove values from vector
[1] 4 9 16 25 36 49 64 81 100 121 144 169 196 225
> a[c(-1,-3,-5,-7)] # remove several values (it is not possible
[1] 4 16 36 64 81 100 121 144 169 196 225 to mix positive and negative indices!)
> a[a>100] # access to a sequence based on a condition
[1] 121 144 169 196 225 # (logical index)

For Character Vectors:

> a <- c("A", "B", "C", "C", "D", "E")
> a[1] # first element of "a" (also a character vector)
[1] "A" # (numeric index)
> a[1:4] # sequence of the first 4 elements
[1] "A" "B" "C" "C"
> a[a>"C"] # select elements "greater" than letter "C"

[1] "D" "E" # (logical index)
> gtC <- a > "C" # the same but using an intermediate logical vector

20 Chapter 3. Data structure

R introduction, Release

> gtC
[1] FALSE FALSE FALSE FALSE TRUE TRUE
> a[gtC]
[1] "D" "E"

For Matrices, elements are accessed through two integer indices:

Note: The agreement to establish the indices order a[i,j] is the same than the one used in Math for the matrix
coefficients a ij

> a <- matrix(1:12, nrow=3, ncol=4) # define a matrix with 3 rows and 4 columns
> a

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

> a[2,3] # return the value in the 2nd row and 3th column
[1] 8
> a[[2,3]] # return the value in the 2nd row and 3th column
[1] 8
> a[2,] # return the values for the second row
[1] 2 5 8 11
> a[,3] # return the values for the third column
[1] 7 8 9

Note: By default, subsetting a single element or a single row or a single column returns a vector, not a matrix
(this can be changed using drop=FALSE)

> a[2,3, drop=FALSE] # so as not to ’drop’ the dimension
[,1] # (returns a 1x1 matrix)

[1,] 8
> a[2, , drop=FALSE] # return a 1x4 matrix

[,1] [,2] [,3] [,4]
[1,] 2 5 8 11

The access to the matrix elements can be done with the indices stored in other auxiliary matrices:

> ind <- matrix(c(1:3,3:1), nrow=3, ncol=2) # auxiliary matrix for the indices i,j
> ind

[,1] [,2]
[1,] 1 3
[2,] 2 2
[3,] 3 1

> a[ind] <- 0 # set to 0 the matrix values in the indices
> a # specified in ’ind’ (1,3), (2,2), (3,1)

[,1] [,2] [,3] [,4]
[1,] 1 4 0 10
[2,] 2 0 8 11
[3,] 0 6 9 12

For lists:

The list components can be accessed using the three operators mentioned above ([, [[and $):

> gal <- list(name="NGC3379", morf="E", colours=c(0.53,0.96))

> gal[3] # access to the third element of the list
$colours # (get back a list with one element called ’colours’

3.3. Subsetting 21

R introduction, Release

[1] 0.53 0.96 # with the sequence ’0.53,0.96’)
> gal["colours"] # single bracket + name (same as above)
$colours
[1] 0.53 0.96

> gal[[3]] # access to the third element of the list
[1] 0.53 0.96 # (get back just the sequence)
> gal[["colours"]] # double bracket + name (same as above)
[1] 0.53 0.96

> gal$colours # element associated with the name ’colours’
[1] 0.53 0.96 # (same as double bracket)
> gal$colours[1] # first element of the sequence in the third element
[1] 0.53
> gal$colours[2] # second element of the sequence in the third element
[1] 0.96

To extract multiple elements of a list, single bracket is mandatory:

> gal <- list(name="NGC3379", morf="E", colours=c(0.53,0.96))

> gal[c(1,2)] # return a list with the elements ’name’ and ’morf’
$name
[1] "NGC3379"

$morf
[1] "E"

For computed indices the [[and [operators can be used. The $ operator can only be used with literal names:

> gal <- list(name="NGC3379", morf="E", colours=c(0.53,0.96))

> info <- "morf" # variable containing the name of one of the list elements

> gal[["morf"]
[1] "E"
> gal[[info]] # computed index for ’morf’ with double bracket
[1] "E"

> gal["morf"]
$morf
[1] "E"
> gal[info] # computed index for ’morf’ with single bracket
$morf
[1] "E"

> gal$morf
[1] "E"
> gal$info # element ’info’ unknown
NULL

To recursively extract an element:

> gal <- list(name="NGC3379", morf="E", colours=c(0.53,0.96))

> gal[[c(3,1)]] # extract the 1st element of the 3rd element (’0.53’)
[1] 0.53
> gal[[3]][[1]] # equivalent double subsetting
[1] 0.53

> gal[c(3,1)] # not recursive!
$colours
[1] 0.53 0.96

22 Chapter 3. Data structure

R introduction, Release

$name
[1] "NGC3379"

Elements can be extracted using partial matching with the [[and $ operators:

> gal <- list(name="NGC3379", morf="E", colours=c(0.53,0.96))

> gal$na # get element by partial matching the name
[1] "NGC3379"
> gal[["na"]] # expect exact element name
NULL
> gal[["na", exact=FALSE]] # partial matching as with ’$’
[1] "NGC3379"

For Data Frames (Tables), the operators used for slicing are the same than those used for lists:

> airquality # data frame in R library
> airquality[1:7,] # display first 7 rows of data frame
Ozone Solar.R Wind Temp Month Day # there are missing values in rows 5 and 6

1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
7 23 299 8.6 65 5 7
> class(airquality[1:7,])
[1] "data.frame"

> airquality[1,1] # get element in row=1, col=1
[1] 41
> airquality[[1,1]] # get element in row=1, col=1
[1] 41

> airquality[1,] # get row=1 (all columns)
Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1
> class(airquality[1,])
[1] "data.frame"
> as.numeric(airquality[1,]) # get row=1 into a numeric vector
[1] 41.0 190.0 7.4 67.0 5.0 1.0

> airquality$Ozone # get "Ozone" column into a vector
[1] 41 36 12 18 NA 28 23 19 8 NA 7 16 11 14 18 14 34 6

[19] 30 11 1 11 4 32 NA NA NA 23 45 115 37 NA NA NA NA NA
[37] NA 29 NA 71 39 NA NA 23 NA NA 21 37 20 12 13 NA NA NA
[55] NA NA NA NA NA NA NA 135 49 32 NA 64 40 77 97 97 85 NA
[73] 10 27 NA 7 48 35 61 79 63 16 NA NA 80 108 20 52 82 50
[91] 64 59 39 9 16 78 35 66 122 89 110 NA NA 44 28 65 NA 22

[109] 59 23 31 44 21 9 NA 45 168 73 NA 76 118 84 85 96 78 73
[127] 91 47 32 20 23 21 24 44 21 28 9 13 46 18 13 24 16 13
[145] 23 36 7 14 30 NA 14 18 20

> class(airquality$Ozone)
[1] "integer"

For Character Strings the access to their elements is done in a different way:

> a <- "This is an example of a text string" # define a character string
> substr(a,5,10) # show a string subset
[1] " is an"

3.3. Subsetting 23

R introduction, Release

3.3.1 Removing NA values

We can remove Not Available values in a simple way using subsetting:

> a <- c(0:2, NA, NA, 5:7) # define vector with NA values

> aa <- a[!is.na(a)] # the condition uses the negation
> aa # of is.na() function
[1] 0 1 2 5 6 7 # new vector with no NA values

To take the subset of multiple vectors avoiding the missing values:

> a <- c(1, 2, 3, NA, 5, NA, 7)
> b <- c("A","B",NA,"D",NA,"E","F")
> valsok <- complete.cases(a,b) # return positions in which both vectors have
> valsok # no-missing values
[1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE
> a[valsok] # subsetting ’a’ gets good elements in ’a’
[1] 1 2 7
> b[valsok] # subsetting ’b’ gets good elements in ’b’
[1] "A" "B" "F"

We can also use the function complete.cases to remove missing values from data frames:

> airquality # data frame in R library
> airquality[1:7,] # display first 7 rows of data frame
Ozone Solar.R Wind Temp Month Day # there are missing values in rows 5 and 6

1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
7 23 299 8.6 65 5 7

> valsok <- complete.cases(airquality) # rows in which all the values are ok
> airquality[valsok,][1:7,] # subset original dataframe and show first 7 rows
Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
7 23 299 8.6 65 5 7
8 19 99 13.8 59 5 8
9 8 19 20.1 61 5 9

24 Chapter 3. Data structure

CHAPTER

FOUR

BASIC OPERATIONS

> a <- c(7+4,7-4,7*4,7/4) # elemental arithmetic operations
> a
[1] 11.00 3.00 28.00 1.75

> length(a) # return vector length
[1] 4

> c(min(a),max(a)) # calculate minimum and maximum value of the vector
[1] 1.75 28.00

> which.min(a) # determine the location (index) of the minimum
[1] 4

> which.max(a) # determine the location (index) of the maximum
[1] 3

> sort(a) # sort vector values
[1] 1.75 3.00 11.00 28.00

> sum(a) # calculate sum of all vector values
[1] 43.75

> cumsum(1:10) # calculate cumulative sum
[1] 1 3 6 10 15 21 28 36 45 55

> cumprod(1:5) # calculate cumulative product
[1] 1 2 6 24 120 720 5040 40320

> mean(a) # calculate the mean value
[1] 10.9375

> median(a) # calculate the median value
[1] 7

> var(a) # calculate the variance
[1] 146.1823

> sd(a) # calculate the standard deviation
[1] 12.09059

> quantile(a, 0.25) # calculate first quantile (prob=25%)
25%

2.6875

There is a command to get basic statistical information in a simple way:

> summary(a)
Min. 1st Qu. Median Mean 3rd Qu. Max.

25

R introduction, Release

1.750 2.688 7.000 10.940 15.250 28.000

Some important mathematical functions are exp(), sin(), cos(), tan(), log(), log10(),...

> ?Trig # show information about trigonometric functions
> ?exp # help about ’exp()’ function

R also includes Special functions of Mathematics: beta(a,b), gamma(x), ...

> ?Special # help about Special mathematical functions

Operations in R can be vectorized helping to improve the code readability and efficiency:

> a <- seq(10,30,10)
> b <- seq(1:3)
> a + b # makes the sum of two vectors
[1] 11 22 33

> a * b # vector product
[1] 10 40 90
> a / b # vector division
[1] 10 10 10

> a > 5 # logical operations
[1] TRUE TRUE TRUE
> b == 2
[1] FALSE TRUE FALSE

The vectorization can be also performed over matrices:

> m1 <- matrix(1:9, 3, 3) # 3 x 3 matrix definition
> m1

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

> m2 <- matrix(11:19, 3, 3) # 3 x 3 matrix definition
> m2

[,1] [,2] [,3]
[1,] 11 14 17
[2,] 12 15 18
[3,] 13 16 19

> m1 * m2 # element-wise matrix multiplication
[,1] [,2] [,3]

[1,] 11 56 119
[2,] 24 75 144
[3,] 39 96 171

> m1 %*% m2 # true matrix multiplication
[,1] [,2] [,3]

[1,] 150 186 222
[2,] 186 231 276
[3,] 222 276 330

Examples:

Not shown; see web page.

26 Chapter 4. Basic Operations

CHAPTER

FIVE

CONTROL STRUCTURES

5.1 Types

Böhm and Jacopini’s work 1 in 1966, showed that the computer programs can be developed using only three
control structures:

1. Sequence Structure: the instructions are executed in the sequential order they have been written, unless the
contrary is specified. In R, this behaviour is inherent to the interactive execution (through the R interpreter) and it
is also the way in which instructions are executed in a script.

2. Selection Structure: different instructions can be executed depending on a condition. In R this is implemented
through:

> if(cond) expr
> if(cond) cons.expr else alt.expr

3. Repetition Structure: the execution of a group of instructions can be repeated inside a loop. This can be
accomplished by:

> for (name in expr_1) expr_2
> while (condition) expr
> repeat expr

Every algorithm can be resolved using the control structures described above. These structures can be nested so
the use of braces “{...}” and proper indentation make the blocks of instructions clearer:

for (x in seq(-3,3)) {
if (x < 0) {
print("Caso A:")
y <- sqrt(-x)
cat("y=",y,"\n")

} else {
print("Caso B:")
y <- sqrt(x)
cat("y=",y,"\n")

}
}

5.2 Control Flow: break, next, return

These three commands are used to alter the normal execution of the control structures. From R help:

break: breaks out of a ‘for’, ‘while’ or ‘repeat’ loop (applies only to the innermost loop).

1 Böhm C., and Jacopini G,. Flow Diagrams, Turing Machines, and Languages with Only Two Formation Rules, Communications of the
ACM, Vol 9., No. 5, 1966, 336–371.

27

R introduction, Release

next: halts the processing of the current iteration and advances the looping index (applies only to the innermost
loop.)

return: returns a value in a function and exits it.

28 Chapter 5. Control Structures

CHAPTER

SIX

DATA READING AND WRITTING

You can import data in R in many different formats!

6.1 ASCII data files

The main functions used in R to import data from ASCII files are read.table and read.csv to read data in
a tabular form, and readLines to read lines from a text file. The only difference between read.table and
read.csv is that in the later the default separator is a comma. The analogous functions to write data to a text
file are called write.table, write.csv, writeLines,...

Let’s have a file named galaxies.dat which contains:

GALAXY morf T.RC3 U-B B-V
NGC1357 Sab 2 0.25 0.87
NGC1832 Sb 4 -0.01 0.63
NGC2276 Sc 5 -0.09 0.52
NGC3245 S0 -2 0.47 0.91
NGC3379 E -5 0.53 0.96
NGC1234 Sab 3 -0.56 0.84
NGC5678 E -4 0.45 0.92

This file can be read as follows:

> gal <- read.table("galaxies.dat",header=TRUE)

29

R introduction, Release

where the instruction header=TRUE specifies that the first line in the file does not contain data but it is a label
identifying the contents of every column.

> gal # show content of data file
GALAXY morf T.RC3 U.B B.V # ’U-B’ and ’B-V’ labels have changed!

1 NGC1357 Sab 2 0.25 0.87
2 NGC1832 Sb 4 -0.01 0.63
3 NGC2276 Sc 5 -0.09 0.52
4 NGC3245 S0 -2 0.47 0.91
5 NGC3379 E -5 0.53 0.96
6 NGC1234 Sab 3 -0.56 0.84
7 NGC5678 E -4 0.45 0.92

The data file is read as a data frame (i.e. a list):

> class(gal)
[1] "data.frame"
> names(gal)
[1] "GALAXY" "morf" "T.RC3" "U.B" "B.V"

> gal$morf # text chains are read as factors
[1] Sab Sb Sc S0 E
Levels: E S0 Sab Sb Sc

> options(stringsAsFactors = FALSE) # unless default behaviour is disabled
> gal <- read.table("galaxies.dat",header=TRUE)
> gal$morf
[1] "Sab" "Sb" "Sc" "S0" "E"

> tapply(gal$U.B,gal$morf,mean) # calculate mean colours for every morph. type
E S0 Sab Sb Sc

0.490 0.470 -0.155 -0.010 -0.090

The names of the different fields can be directly accessed (without lists name specification) using their names:

> attach(gal) # direct access to the list elements
> morf # (it is no longer necessary to use gal$morf,...)
[1] Sab Sb Sc S0 E
Levels: E S0 Sab Sb Sc

> detach(gal) # remove direct access

If the data file only contains numbers, information can also be read and assigned to a matrix instead of storing it
in a data frame. As an example, if we want to read a file with 3 columns:

> a <- matrix(data=scan("numbers.dat",0),ncol=3,byrow=TRUE)
Read 36 items
> a

[,1] [,2] [,3]
[1,] 2 0.25 0.87
[2,] 4 -0.01 0.63
[3,] 5 -0.09 0.52
[4,] -2 0.47 0.91
[5,] -5 0.53 0.96
[6,] 1 0.45 0.92
[7,] 3 0.20 0.73
[8,] -3 0.51 0.94
[9,] -5 0.55 0.96

[10,] 10 -0.22 0.39
[11,] -1 0.38 0.85
[12,] 5 -0.03 0.63

If the number of columns is not specified through ncol, all the elements are stored into a one dimensional array:

30 Chapter 6. Data Reading and Writting

R introduction, Release

> a1 <- matrix(data=scan("numbers.dat",0))
Read 36 items
> a1

[,1]
[1,] 2.00
[2,] 0.25
[3,] 0.87
[4,] 4.00
[5,] -0.01
[6,] 0.63
[7,] 5.00
[8,] -0.09
[9,] 0.52
. .
. .
. .

[28,] 10.00
[29,] -0.22
[30,] 0.39
[31,] -1.00
[32,] 0.38
[33,] 0.85
[34,] 5.00
[35,] -0.03
[36,] 0.63

If byrow=TRUE is omitted the element assignment does not preserve the columns information:

> a2 <- matrix(data=scan("numbers.dat",0),ncol=3)
Read 36 items
> a2

[,1] [,2] [,3]
[1,] 2.00 -5.00 -5.00
[2,] 0.25 0.53 0.55
[3,] 0.87 0.96 0.96
[4,] 4.00 1.00 10.00
[5,] -0.01 0.45 -0.22
[6,] 0.63 0.92 0.39
[7,] 5.00 3.00 -1.00
[8,] -0.09 0.20 0.38
[9,] 0.52 0.73 0.85

[10,] -2.00 -3.00 5.00
[11,] 0.47 0.51 -0.03
[12,] 0.91 0.94 0.63

Note: Reading large datafiles requires a careful setting of the read.table parameters. Specifying the “colClasses”
argument can make the data reading twice as fast while setting the “nrows” argument helps with the memory
usage.

6.2 R Example Data

R contains a lot of example data. All the functions and data blocks are stored in packages.

The list of packages currently installed in R can be seen with:

> library()
Packages in library ‘/home/user/R/x86_64-redhat-linux-gnu-library/3.0’:

FITSio FITS (Flexible Image Transport System) utilities
manipulate Interactive Plots for RStudio

6.2. R Example Data 31

R introduction, Release

plyr Tools for splitting, applying and combining data
rstudio Tools and Utilities for RStudio

Packages in library ‘/usr/lib64/R/library’:

base The R Base Package
bitops Functions for Bitwise operations
boot Bootstrap Functions (originally by Angelo Canty for S)
class Functions for Classification
...

To gather information about a specific package:

> library(help=splines) # show help about the ’splines’ package

Information on package ‘splines’

Description:

Package: splines
Version: 3.0.1
Priority: base
Imports: graphics, stats
Title: Regression Spline Functions and Classes
Author: Douglas M. Bates <bates@stat.wisc.edu> and William N.

Venables <Bill.Venables@csiro.au>
Maintainer: R Core Team <R-core@r-project.org>
Description: Regression spline functions and classes
...

And to load a package and be able to use its functionality:

> library(splines) # load ’splines’ package

We can check the data lists that are currently available:

> data()
Data sets in package ‘datasets’:

AirPassengers Monthly Airline Passenger Numbers 1949-1960
BJsales Sales Data with Leading Indicator
BJsales.lead (BJsales) Sales Data with Leading Indicator
BOD Biochemical Oxygen Demand
CO2 Carbon Dioxide Uptake in Grass Plants
ChickWeight Weight versus age of chicks on different diets
DNase Elisa assay of DNase
EuStockMarkets Daily Closing Prices of Major European Stock
...

And those that are available in a given package:

> data(package="cluster") # show data available through the package ’cluster’

Data sets in package ‘cluster’:

agriculture European Union Agricultural Workforces
animals Attributes of Animals
chorSub Subset of C-horizon of Kola Data
flower Flower Characteristics
plantTraits Plant Species Traits Data
...

> data(animals,package="cluster") # load ’animals’ list from ’cluster’ package

32 Chapter 6. Data Reading and Writting

R introduction, Release

One of the strongest points in R is that new packages are continuously being generated, including new functional-
ities. To install a new package:

> install.packages("car") # install ’car’ package
Installing package into ‘/home/ceballos/R/x86_64-redhat-linux-gnu-library/3.0’
...

--- Please select a CRAN mirror for use in this session --- # ask for a software mirror

Once installed we can use it:

> library(car) # load in memory the functionality defined in ’car’
> data(package="cluster")
Data sets in package ’car’:

AMSsurvey American Math Society Survey Data
Adler Experimenter Expectations
...

6.2. R Example Data 33

R introduction, Release

34 Chapter 6. Data Reading and Writting

CHAPTER

SEVEN

GRAPHS

7.1 Graphics package

The “base” 2-D graphics options in R are included in the base package graphics (plot, hist, boxplot, etc.):

• plot(x,y) and hist(x) open a new graphic device if there is not one already open. Defaults are x11
for Unix, windows for Windows and quartz for Mac OS X.

• There are many parameters in these functions that can be overridden using the par function. They are
documented in ?par

> par("pch") # default plotting symbol (open circle)
[1] 1
> par(pch=2) # change symbol (open triangle)

> par("lty") # default line type
[1] "solid"
> par("lwd") # default line width
[1] 1
> par("col") # default colour
[1] "black"
> par("mfrow") # default number of rows & columns (filled row-wise)
[1] 1 1
> par("mfcol") # default number of rows & columns (filled column-wise)
[1] 1 1

The plotting process will then be:

1. Set a graphics device

> pdf(myfile.pdf,width=10.,height=7.1) # landscape output plot in PDF format
> postscript(myfile.ps) # PS output
> png(myfile.png) # PNG
> jpeg(myfile.jpeg) # JPG

2. Make a plot (see main functions below)

> plot(x,y)

3. Close device

> dev.off()

7.2 Important Plotting Functions

plot: this function makes scatterplots or other types of R objects plots

abline: add a straight line to a plot

35

R introduction, Release

lines: add connected line segments to a plot

segments: add disconnected line segments to a plot

points: add points to a plot

arrows: add arrows to a plot

polygon: add polygons to a plot

text: add text labels to a plot

title: add labels for X,Y axes, title, subtitle, outer margin

axis: modify axes ticks and axes labels

Let’s take the light velocity measures done by Michelson and Morley in their famous experiment. They performed
5 series (Expt) with 20 measures each (Run):

> data(morley) # data are in ’base’ package loaded by default
> morley

Expt Run Speed
001 1 1 850
002 1 2 740
003 1 3 900
004 1 4 1070
...
100 5 20 870

We can generate a histogram:

> hist(morley$Speed, main="Speed of light measurements",
+ xlab="c-299000 km/s", ylab="frequency")

Or a scatter plot:

> hip <- read.table("http://www.iiap.res.in/astrostat/tuts/HIP.dat", # read web file
+ header=TRUE, fill=TRUE) # fill=TRUE if some rows have missing values

> names(hip)
[1] "HIP" "Vmag" "RA" "DE" "Plx" "pmRA" "pmDE" "e_Plx" "B.V" # show columns

> plot(hip$B.V,hip$Vmag,ylim=c(13,0)) # scatter plot (black open circle points)
> lines(c(-1,2.5),c(5,5), col="red")
> points(c(1.5),c(2), pch=2, col="blue")
> text(1.5,1.5, "Fake point", col="blue")

36 Chapter 7. Graphs

R introduction, Release

> title(main="HR diagram", cex.main=1.5, col.main="magenta")
> axis(1, col="violet")

Let’s analyse the distribution of star magnitudes we have just loaded. We will first create a new list containing
only two components:

> hipBmag <- hip$B.V + hip$Vmag # calculate B magnitude as "B.V" + "Vmag"
> newlist = list(V = hip$Vmag, B = hipBmag) # generate a new named list
> names(newlist) # show elements of the new list
[1] "V" "B"
> boxplot(newlist,horizontal=TRUE, # create a "box-and-whiskers" plot
+ main="Magnitude Distribution",xlab="magnitude")

7.2. Important Plotting Functions 37

R introduction, Release

An example of time series: the monthly mean relative sunspot numbers from 1749 to 1983 (directly available in
the package datasets):

> sunspots
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1749 58.0 62.6 70.0 55.7 85.0 83.5 94.8 66.3 75.9 75.5 158.6 85.2
1750 73.3 75.9 89.2 88.3 90.0 100.0 85.4 103.0 91.2 65.7 63.3 75.4
1751 70.0 43.5 45.3 56.4 60.7 50.7 66.3 59.8 23.5 23.2 28.5 44.0

.

.

.
1981 114.0 141.3 135.5 156.4 127.5 90.0 143.8 158.7 167.3 162.4 137.5 150.1
1982 111.2 163.6 153.8 122.0 82.2 110.4 106.1 107.6 118.8 94.7 98.1 127.0
1983 84.3 51.0 66.5 80.7 99.2 91.1 82.2 71.8 50.3 55.8 33.3 33.4

> png("sunspots.png", width=800, height=400) # define output to PNG file
> plot(sunspots) # plot time series
> dev.off() # close PNG file
null device

1

7.3 Simple plots

Although R provides high-level graphics facilities, these tools are built on a set of flexible low-level functions,
which sometimes constitute a more flexible approach when creating plots:

define function to be plotted
> x <- seq(-3,3,length=100)
> y <- x**3

> plot.new() # a new plot is created
> plot.window(xlim=c(-3,3),ylim=c(-30,30)) # set up the world coordinate system
> lines(x,y,col="red",lw=4) # plot the curve (red, line width=4)
> axis(1, pos=0, at=c(-3,-2,-1,1,2,3)) # draw X-axis and ticks
> axis(2, pos=0, at=c(-30,-20,-10,10,20,30),
+ las=1) # draw Y-axis and ticks
> title("A cubic polynomial")

38 Chapter 7. Graphs

R introduction, Release

7.4 Mathematical Annotation

Mathematical symbols can be annotated in R graphs using expressions (expression function). The possible
symbols are listed under ?plotmath. It is also possible to include computed values in the annotation:

> x <- c(1:10)
> y <- c(11:20)
> plot(x, y, main=expression("Fake points (" * hat(omega) * "," * bar(lambda) *
+ ") correlation"), xlab=expression(sum(hat(omega)[j]/N, j=1,10)),
+ ylab=expression(sqrt(bar(lambda))), sub=substitute(N == k, list(k=length(x))),
+ col="red", pch=20, cex=1.5)

With R you can also make 3D data representations:

> demo(persp)
...

7.4. Mathematical Annotation 39

R introduction, Release

Or image representations:

> demo(image)

With R you can even make 3D interactive representations:

> library(car)
> attach(mtcars)
> scatter3d(wt, disp, mpg)

40 Chapter 7. Graphs

R introduction, Release

7.5 Making use of colours

The colours to use in R graphs can be displayed with:

> colors()
[1] "white" "aliceblue" "antiquewhite"
[4] "antiquewhite1" "antiquewhite2" "antiquewhite3"
...
[652] "yellow" "yellow1" "yellow2"
[655] "yellow3" "yellow4" "yellowgreen"

> demo(colors)

(See the Colors Chart at http://research.stowers-institute.org/efg/R/Color/Chart/index.htm)

However, the use of R colour functions (package grDevices) is highly recommendable when plotting coloured
graphs.

7.5.1 Colour Palettes

A vector of n contiguous colours can be created using the following functions:

rainbow(n, s = 1, v = 1, start = 0, end = max(1, n - 1)/n, alpha = 1)

heat.colors(n, alpha = 1)

terrain.colors(n, alpha = 1)

topo.colors(n, alpha = 1)

cm.colors(n, alpha = 1)

> x <- c(1:10)
> y <- c(1:10)

> par(mfrow=c(3,2))
> plot(x,y, pch=20, col=rainbow(10), cex=3, main="rainbow(10)", cex.main=1)
> plot(x,y, pch=20, col=heat.colors(10), cex=3, main="heat.colors(10)", cex.main=1)
> plot(x,y, pch=20, col=terrain.colors(10), cex=3, main="terrain.colors(10)", cex.main=1)
> plot(x,y, pch=20, col=topo.colors(10), cex=3, main="topo.colors(10)", cex.main=1)
> plot(x,y, pch=20, col=cm.colors(10), cex=3, main="cm.colors(10)", cex.main=1)

The n parameter refers to the number of palette colours requested, and alpha is the number in [0,1] specified to
get transparency (see full documentation in help(rainbow)).

7.5. Making use of colours 41

http://research.stowers-institute.org/efg/R/Color/Chart/index.htm

R introduction, Release

7.5.2 Colour Interpolation

There are functions in R that return functions that interpolate a set of given colours to create new colour palettes
and colour ramps:

• colorRamp: returns a ‘function’ that maps values between 0 and 1 to colours.

> pal <- colorRamp(c("green","blue")) # define the function

> pal(0) # column 1: RED content
[,1] [,2] [,3] # column 2: GREEN content

[1,] 0 255 0 # column 3: BLUE content

> pal(0.5)
[,1] [,2] [,3]

[1,] 0 127.5 127.5

> pal(1) # BLUE colour
[,1] [,2] [,3]

[1,] 0 0 255

> pal(seq(0,1,len=5))
[,1] [,2] [,3]

[1,] 0 255.00 0.00
[2,] 0 191.25 63.75
[3,] 0 127.50 127.50
[4,] 0 63.75 191.25
[5,] 0 0.00 255.00

• colorRampPalette: returns a function that takes an integer argument and returns that number of colours
interpolating the given sequence

> x <- c(1:10)
> y <- c(1:10)

> mypal <- colorRampPalette(c("red","green"))

> mypal(10)
[1] "#FF0000" "#E21C00" "#C63800" "#AA5500" "#8D7100" "#718D00" "#55AA00"
[8] "#38C600" "#1CE200" "#00FF00"

> plot(x,y, pch=20, col=mypal(10),
+ cex=3, main="colorRampPalette(c(\"red\",\"green\"))", cex.main=1)

42 Chapter 7. Graphs

R introduction, Release

7.5.3 Additional Palettes and colour functions

There is one package installable from CRAN with additional colour palettes (sequential, diverging and qualitative
palettes), that can be used with colorRamp and colorRampPalette: RColorBrewer

> library(RColorBrewer) # load library

> colors <- brewer.pal(4, "YlOrRd") # select 4 of the 9 colours from "YlOrRd" sequence

> colors # show colours selected
[1] "#FFFFB2" "#FECC5C" "#FD8D3C" "#E31A1C"

> mypal <- colorRampPalette(colors) # create a new (interpolated) palette

> image(volcano, col = mypal(20)) # plot image using 20 colours from new palette

7.5. Making use of colours 43

R introduction, Release

When plotting a scatter plot with a lot of points, two options can be used to clarify the plot: smoothScatter
and transparency:

> x <- rnorm(10000)
> y <- rnorm(10000)
> par(mfrow=c(1,2))
> smoothScatter(x, y, main="smoothScatter function")
> plot(x,y,col=rgb(0,0,0,0.1), pch=19, main="Scatterplot with transparency")

44 Chapter 7. Graphs

CHAPTER

EIGHT

STATISTICAL TREATMENT

R contains a very comprehensive library with statistical functions, including the most common probability distri-
butions:

8.1 Associated Functions

There are several functions associated to every probability distribution, and they can be accessed adding a prefix
to the distribution name:
_______ ___

Prefix Meaning
_______ ___

d density function
p distribution function (cumulative function)
q inverse of the distribution function (quantile function)
r random generation of numbers following the probability distribution

_______ ___

The arguments are obviously different for each associated function. For the Normal Distribution:

> ?Normal

Normal package:stats R Documentation

The Normal Distribution

Description:

Density, distribution function, quantile function and random

45

R introduction, Release

generation for the normal distribution with mean equal to ‘mean’
and standard deviation equal to ‘sd’.

Usage:

dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)

...

1. dnorm(x, mean = 0, sd = 1, log = FALSE)

It evaluates the density of the normal distribution with mean mean and standard deviation sd in x abscissa. The
normal distribution has density

f(x) = 1√
2πσ

e−
(x−µ)2

2σ2

where µ is the mean of the distribution and σ the standard deviation.

> x <- seq(-10,10,by=.5) # sequence of numbers
> x
[1] -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5

[13] -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
[25] 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
[37] 8.0 8.5 9.0 9.5 10.0

> y <- dnorm(x, mean=3, sd=2) # Normal distribution with mean=3 and sd=2

> plot(x,y,main="Normal Distribution Example") # Plot the result

2. rnorm(n, mean = 0, sd = 1)

Random sequence of n numbers following a normal distribution with mean mean and standard deviation sd.

> x <- rnorm(1000,mean=3,sd=2) # 1000 random numbers with mean=3 and sd=2
> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.783 1.694 3.003 3.047 4.436 9.864

> hist(x,main="Normal Distribution Simulation", ylab="Frequency", plot=TRUE)

46 Chapter 8. Statistical Treatment

R introduction, Release

To ensure reproducibility, it is important to set the random number seed when performing simulations:

> set.seed(1000)
> rnorm(10)

[1] -0.44577826 -1.20585657 0.04112631 0.63938841 -0.78655436 -0.38548930
[7] -0.47586788 0.71975069 -0.01850562 -1.37311776

> rnorm(10)
[1] -0.98242783 -0.55448870 0.12138119 -0.12087232 -1.33604105 0.17005748
[7] 0.15507872 0.02493187 -2.04658541 0.21315411

> set.seed(1000)
> rnorm(10)

[1] -0.44577826 -1.20585657 0.04112631 0.63938841 -0.78655436 -0.38548930
[7] -0.47586788 0.71975069 -0.01850562 -1.37311776

3. pnorm(q, mean = 0, sd = 1, lower.tail = FALSE, log.p = FALSE)

It evaluates the distribution function (area below the probability distribution) for a normal distribution with mean
mean and standard deviation sd. By default, lower.tail = TRUE returns the area in the left wing of the
distribution (P [X ≤ x]) and lower.tail = FALSE returns the right wing (P [X > x]).

> pnorm(1.5,mean=3,sd=2) # left wing (default)
[1] 0.2266274

8.1. Associated Functions 47

R introduction, Release

> pnorm(1.5,mean=3,sd=2,lower.tail=FALSE) # right wing
[1] 0.7733726

The R object ecdf(x) lets us calculate and plot the Empirical Cumulative Distribution Function (useful when
the cumulative distribution is not known). Let’s see with an example how to plot the cumulative function in the
case of a normal distribution:

> par(mfrow = c(1, 2)) # define 1 row and 2 columns to plot
> x <- rnorm(50, 2, 4) # random numbers following normal distribution

> plot(ecdf(x),verticals = TRUE, col.points = "blue",
+ col.hor = "red", col.vert = "bisque") # plot Empirical Cumulative Distribution Function

which is equivalent to:

> y <- pnorm(x, 2, 4)
> plot(x,y, main="CDF using pnorm",
+ col="darkolivegreen",pch=20) # plot Cumulative Distribution Function using ’pnorm’

4. qnorm(p, mean = 0, sd = 1, lower.tail = FALSE, log.p = FALSE)

It evaluates the inverse of the distribution function (the abscissa for an area p under the probability distribution) for
a normal distribution with mean mean and standard deviation sd. By default, lower.tail = TRUE assumes
that the area is that of the left wing of the distribution and lower.tail = FALSE assumes that is the right
wing area.

> qnorm(0.2266274,mean=3,sd=2) # left wing (default)
[1] 1.5

> qnorm(0.7733726,mean=3,sd=2,lower.tail=FALSE) # right wing
[1] 1.5

8.2 Common probability distributions
__

Distribution Associated Function
__

Uniform dunif, punif, qunif, runif
Binomial dbinom, pbinom, qbinom, rbinom
Poisson dpois, ppois, qpois, rpois
... d..., p..., q..., r...
__

Normal dnorm, pnorm, qnorm, rnorm
t de Student dt, pt, qt, rt

48 Chapter 8. Statistical Treatment

R introduction, Release

chi dchisq, pchisq, qchisq, rchisq
F de Fisher df, pf, qf, rf
... d..., p..., q..., r...
__

8.3 Example script

Purpose: Estimation of the value of π using random points generated inside a square.

Procedure: Calculate the ratio between the inner and outer points in a circle with radius equal to 1, inscribed in
a square of side equal to 2 (i.e., the circle’s diameter is equal to the square’s side).

We save the script in a file called pirandom.R:

estimate PI by using random numbers
A.squ = n = (2*r)²
A.cir = n.inside = pi * r²
#
pi = n.inside/ r² = 4*n.inside/n
#
pirandom <- function(n) # define function
{
x <- runif(n,-1,1) # random numbers in [-1,1]
y <- runif(n,-1,1) # random numbers in [-1,1]
plot(x,y) # plot
r <- sqrt(x*x+y*y) # distance to centre
rinside <- r[r<1] # inside circle with r=1?
n.inside <- length(rinside)
print(4*n.inside/n) # print pi estimation

}

The code is executed in R as follows:

> source("pirandom.R") # load the code (function) in the script
> pirandom(1000) # run the function for 1000 points
[1] 3.184 # ’pi’ value estimation

8.3. Example script 49

R introduction, Release

50 Chapter 8. Statistical Treatment

CHAPTER

NINE

RSTUDIO: AN INTEGRATED
ENVIRONMENT

There are Integrated Development Environments (IDE) that helps in the process of R development. Among them,
a very common one is RStudio

51

http://www.rstudio.com/ide/

R introduction, Release

52 Chapter 9. RStudio: an integrated environment

CHAPTER

TEN

BIBLIOGRAPHY AND REFERENCES

10.1 Books

• R in action, Robert I. Kabacoff, Manning Publications; 1 edition (August 24, 2011), ISBN-10: 1935182390,
ISBN-13: 978-1935182399

• R for dummies, Joris Meys, Andrie de Vries, 2012, ISBN-10: 1119962846, ISBN-13: 978-1119962847

• Beginning R: An Introduction to Statistical Programming, Larry Pace, Apress; 1 edition (October 17,
2012), ISBN-10: 1430245549, ISBN-13: 978-1430245544

• Beginning R: The Statistical Programming Language, Mark Gardener, Wrox; 1 edition (June 5, 2012),
ISBN-10: 111816430X, ISBN-13: 978-1118164303

• Learning RStudio for R Statistical Computing, Mark P.J. van der Loo and Edwin de Jonge, Packt Pub-
lishing (December 24, 2012), ISBN-10: 1782160604, ISBN-13: 978-1782160601

10.2 On-line tutorial and courses

• http://www.cyclismo.org/tutorial/R

• http://tryr.codeschool.com/levels/1/challenges/1

• Data Analysis, COURSERA

• Computing For Data Analysis, COURSERA

• http://tryr.codeschool.com/

10.3 Center for Astrostatistics

• http://astrostatistics.psu.edu/

10.4 R graphs

• Simple graphics

• CRAN Task View: Graphics

53

http://www.cyclismo.org/tutorial/R
http://tryr.codeschool.com/levels/1/challenges/1
http://tryr.codeschool.com/
http://astrostatistics.psu.edu/
http://www.harding.edu/fmccown/r/
http://cran.r-project.org/web/views/Graphics.html

R introduction, Release

10.5 Blogs

• Quick-R

• R-statistics blog

• R-bloggers

• Revolutions

• R Wiki

54 Chapter 10. Bibliography and References

http://www.statmethods.net/
http://www.r-statistics.com/
http://www.r-bloggers.com/
http://blog.revolutionanalytics.com/
http://rwiki.sciviews.org/doku.php

CHAPTER

ELEVEN

PDF VERSION

Here you can find a PDF file with the contents of this web site.

55

R introduction, Release

56 Chapter 11. Pdf Version

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

57

	Introduction
	Main features of R
	Starting R
	Quitting R
	Help in R
	Other useful commands

	Data structure
	Data structure types
	Vectors
	Matrices
	Arrays
	Factors
	Lists
	Data Frames (Tables)
	Functions

	Special Values
	Subsetting
	Removing NA values

	Basic Operations
	Control Structures
	Types
	Control Flow: break, next, return

	Data Reading and Writting
	ASCII data files
	R Example Data

	Graphs
	Graphics package
	Important Plotting Functions
	Simple plots
	Mathematical Annotation
	Making use of colours
	Colour Palettes
	Colour Interpolation
	Additional Palettes and colour functions

	Statistical Treatment
	Associated Functions
	Common probability distributions
	Example script

	RStudio: an integrated environment
	Bibliography and References
	Books
	On-line tutorial and courses
	Center for Astrostatistics
	R graphs
	Blogs

	Pdf Version
	Indices and tables

